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AbbreViAtions

PTM	 posttranslational	modification
CTT	 C-terminal	tail
TTL	 tubulin	tyrosine	ligase
TTLL	 TTL-like	enzyme
MAP	 microtubule	associated	protein
+TIP	 plus-end	tracking	protein
CLIP	 cytoplasmic	linker	protein
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AbstrAct
Microtubules create diverse arrays with specific cellular functions such as the mitotic 

spindle, cilia and bundles inside neurons. How microtubules are regulated to enable 
specific functions is not well understood. Recent work has shown that posttranslational 
modifications of the tubulin building blocks mark subpopulations of microtubules and 
selectively affect downstream microtubule‑based functions. In this way, the tubulin modifi‑
cations generate a “code” that can be read by microtubule‑associated proteins in a 
manner analogous to how the histone code directs diverse chromatin functions. Here we 
review recent progress in understanding how the tubulin code is generated, maintained, 
and read by microtubule effectors.

introduction
Microtubules	 are	 cytoskeletal	 filaments	 that	 play	 important	 roles	 in	 diverse	 cellular	

functions	 including	 structural	 support,	 localization	 of	 organelles,	 segregation	 of	
chromosomes	 and	 intracellular	 trafficking.	 Microtubules	 are	 polymers	 of	 a/b-tubulin	
heterodimers	 that	 associate	 head-to-tail	 and	 laterally	 to	 form	 hollow	 tubes	 (Fig.	 1).	
Microtubules	can	be	organized	into	microtubule-based	organelles	with	specialized	func-
tions,	including	the	radial	cytoplasmic	network,	cilia,	centrioles	and	the	mitotic/meiotic	
spindle.	 Singlet	 microtubules	 are	 the	 most	 ubiquitous	 form	 of	 the	 polymer,	 however,	
microtubules	 can	be	 fused	 laterally	 into	doublets	 (in	 cilia)	or	 triplets	 (in	 centrioles	 and	
basal	bodies).

Singlet	 microtubules	 are	 usually	 highly	 dynamic	 and	 undergo	 rapid	 turnover	 by	
exchange	of	subunits.	The	prevalent	form	of	this	turnover	is	known	as	dynamic	instability	
where	the	ends	of	microtubules	undergo	rapid	transitions	between	growth	and	shrinkage.	
Dynamic	instability	has	been	postulated	to	provide	a	space-probing	mechanism	critical	for	
establishment	of	contacts	between	 the	ends	of	microtubules	and	target	organelles	 (such	
as	chromosomes	during	mitosis).1	However,	within	the	cytoplasmic	network,	 there	also	
exists	a	stable	subpopulation	of	microtubules	(t1/2	=	1–2	hr	for	stable	microtubules	versus	
t1/2	=	5–15	min	for	dynamic	microtubules).2-4	The	cellular	function	of	stable	microtubules	
is	 unknown	 but	 it	 has	 been	 suggested	 that	 these	 microtubules	 are	 required	 for	 cellular	
morphogenesis.5	 A	 distinguishing	 feature	 of	 stable	 microtubules	 is	 that	 they	 acquire	 a	
variety	of	posttranslational	modifications	(PTMs)	on	tubulin	dimers	in	a	time-dependent	
manner.	The	microtubule	doublets	of	cilia	and	 triplets	of	centrioles	are	also	very	 stable	
and	 highly	 enriched	 in	 PTMs.	 The	 functions	 of	 the	 evolutionarily-conserved	 micro-
tubule	PTMs	are	poorly	understood.	Recent	studies	from	multiple	laboratories,	including	
our	own,	have	led	to	a	hypothesis	that	tubulin	PTMs	dictate	the	recruitment	of	protein	
complexes	 (microtubule	 effectors),	 which	 in	 turn	 contribute	 to	 microtubule-based	
functions	 in	 specific	 cellular	 locations.	Thus,	PTMs	could	be	creating	a	 “tubulin	code”	
that	in	many	ways	is	analogous	to	the	“histone	code”	that	has	been	proposed	to	regulate	
chromatin	assembly	and	gene	transcription.6

A tubulin code
Microtubules	can	acquire	a	variety	of	evolutionarily	conserved	PTMs	including	poly-

glutamylation,	polyglycylation,	detyrosination	(and	related	D2	modification),	acetylation,	
phosphorylation	and	palmitoylation	(Table	1	and	ref.	7).	In	most	cases,	the	modification	
enzymes	 act	 preferentially	 on	 tubulin	 subunits	 already	 incorporated	 into	 microtubules.	
One	 exception	 is	 the	 recently	 discovered	 phosphorylation	 of	b-tubulin	 on	 Ser172	 that	
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occurs	on	unpolymerized	tubulin	in	mitotic	cells	and	inhibits	incor-
poration	of	heterodimers	into	the	polymer.8	Most	PTMs	are	enriched	
on	 microtubules	 that	 are	 “stable”	 as	 defined	 by	 their	 slow	 subunit	
turnover	 and	 resistance	 to	 drugs	 that	 depolymerize	 microtubules	
such	as	nocodazole.9-15	However,	in	vitro	studies	on	purified	tubulin	
have	 failed	 to	 detect	 any	 effect	 of	 acetylation	 or	 detyrosination	 on	
the	polymer	dynamics.16-18	Thus,	at	least	some	PTMs	do	not	affect	
polymer	dynamics	by	changing	the	 intrinsic	properties	of	microtu-
bules.	Rather,	an	emerging	hypothesis	is	that	tubulin	modifications	
specify	a	code	that	dictates	biological	outcomes	through	changes	in	
higher-order	 microtubule	 structure	 and/or	 by	 recruiting	 and	 inter-
acting	 with	 effector	 proteins.	 This	 hypothesis	 is	 analogous	 to	 the	
histone	code	hypothesis	-	that	modifications	on	core	histones,	acting	
in	a	combinatorial	or	sequential	fashion,	specify	multiple	functions	
of	 chromatin	 such	 as	 changes	 in	 higher-order	 chromatin	 structure	
or	 selective	 activation	 of	 transcription.19-21	 The	 apparent	 parallels	
between	 these	 two	 types	 of	 structural	 frameworks,	 chromatin	 in	
the	nucleus	 and	microtubules	 in	 the	 cytoplasm,	 are	 intriguing	 and	
suggest	that	a	general	theme	has	evolved	that	regulates	the	functions	
of	cellular	polymers	(Fig.	1).

One	 apparent	 parallel	 is	 that	 specific	 polymer	 regions	 can	 be	
distinguished	 biochemically	 and	 functionally	 by	 the	 presence	 of	
PTMs	on	their	building	blocks.	Chromatin	of	genes	active	in	tran-
scription	has	increased	acetylation	on	certain	lysine	residues	of	core	
histones.20,22	 In	 a	 similar	 fashion,	 PTMs	 on	 tubulin	 are	 enriched	
in	 restricted	 subcellular	 areas	 and	 therefore	 have	 the	 potential	 to	
locally	 adapt	 microtubules	 for	 specific	 functions.	 For	 example,	
microtubules	oriented	towards	a	wound	in	a	confluent	monolayer	of	
cells	are	enriched	 in	detyrosination	and	acetylation23,24	and	central	
spindle	 but	 not	 astral	 microtubules	 are	 marked	 by	 detyrosination,	
glutamylation	and	acetylation.25-27	A	second	parallel	between	chro-
matin	 and	 microtubules	 is	 that	 most	 PTMs	 take	 place	 on	 the	 tail	

domains	of	histones	and	tubulins	that	comprise	the	outward	face	of	
the	polymer	(Fig.	1).	 In	the	case	of	a-	and	b-tubulin,	most	PTMs	
occur	on	the	C-terminal	tails	(CTTs),	essential	domains28	that	could	
not	be	resolved	in	atomic	models29	but	are	known	to	comprise	the	
binding	region	for	a	large	number	of	microtubule	binding	proteins.30	
In	the	paragraphs	below,	we	will	review	recent	work	supporting	the	
existence	of	a	“tubulin	code”	and	discuss	potential	ramifications.

whAt Are the enzymes thAt estAblish the tubulin 
code?

The	discovery	of	the	enzymes	that	deposit	the	modifications	has	
long	 lagged	 behind	 the	 discovery	 of	 the	 modifications	 themselves.	
However,	the	last	few	years	have	been	a	time	of	rapid	progress	in	the	
identification	of	microtubule	PTM	enzymes.	Detyrosination	involves	
the	enzymatic	removal	of	the	C-terminal	tyrosine	of	a-tubulin	by	a	
carboxypeptidase.31	The	identity	of	the	tubulin	carboxypeptidase	has	
not	been	established	despite	multiple	purification	efforts.	However,	
a	recent	study	 identified	a	novel	cytosolic	carboxypeptidase,	Nna1/
CCP1,	that	is	abundant	in	tissues	with	high	content	of	tubulin	such	
as	testis,	pituitary	and	brain.32	Mice	lacking	Nna1/CCP1	lack	detect-
able	 detyrosinated	 a-tubulin	 in	 mitral	 cells	 of	 the	 olfactory	 bulb	
and	experience	degeneration	of	Purkinje	cells	and	altered	gait	which	
indicates	 that	 detyrosination	 could	 be	 important.	 Nna1/CCP1	
belong	to	a	family	of	six	related	genes	with	some	showing	restricted	
pattern	of	expression.32	Future	biochemical	studies	should	establish	
whether	 Nna1/CCP1	 is	 the	 long-sought	 tubulin	 carboxypeptidase.	
The	enzyme	that	carries	out	the	reverse	reaction	and	converts	soluble	
a-tubulin	 back	 to	 its	 unmodified	 form,	 tubulin	 tyrosine	 ligase	
(TTL),	 was	 identified	 much	 earlier.33	 Interestingly,	 it	 appears	 that	
only	 mammals	 and	 trypanosomes	 have	 a	 TTL	 sequence	 in	 their	
genomes,34	 while	 detyrosination	 is	 widespread	 among	 eukaryotes.	

Table 1	 Tubulin	PTMs

Ptm description site(s) Forward  reverse  
   enzyme(s) enzymes(s)
Detyrosination removal of  terminal  Carboxypeptidase31 TTL33 

 C‑terminal  tyrosine on (Nna1/CCP1?)32  
 tyrosine CTT of a‑tubulin  
Glutamylation addition of one  multiple glutamates  TTLL1, TTLL5, TTLL6  unknown 
 or more glutamates  in the primary  (a‑tubulin)34,54  
 as a side chain sequence of CTTs  TTLL4, TtTTLL6Ap,   
  of a‑ and b‑ tubulin TTLL7 (b‑tubulin)34,54,69 
Glycylation addition of one or  multiple glutamates  unknown unknown 
 more glycines as a  in the primary    
 side chain sequence of CTTs    
  of a‑ and b‑tubulin  
Acetylation addition of acetyl  Lys40 of a‑tubulin unknown HDAC6, SirT239‑41 

 group   
Phosphorylation addition of phosphate Ser172 and unknown  Cdk1/cyclin B  unknown 
  site(s) on CTT of b‑tubulin  (Ser172 of b‑tubulin)8   
  unknown sites on  PSK59 Fes60 Syk57,58  
  a‑tubulin  
Palmitoylation addition of palmitate  Cys376 of a‑tubulin unknown unknown 
 lipid group   
D2 removal of penultimate  CTT of a‑tubulin unknown unknown 
 glutamate from     
 detyrosinated a‑tubulin   

The	Tubulin	Code
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Thus,	either	this	PTM	is	irreversible	in	most	eukaryotes	or	another	
enzyme	 (possibly	 a	 TTL-like	 protein,	 see	 below)	 exists	 that	 can	
restore	tyrosine	at	the	end	of	a-tubulin.

Acetylation	 of	 a-tubulin	 occurs	 on	 residue	 Lys-4035	 within	 a	
loop	 that	 is	 disordered	 in	 the	 crystal	 structure	 but	 thought	 to	 be	
located	inside	the	microtubule	lumen.29	If	acetylation	occurs	in	the	
microtubule	 lumen,	 then	 acetylation	 and	 deacetylation	 enzymes	
must	 be	 capable	 of	 accessing	 the	 space	 inside	 the	 microtubule.	 It	
is	 relevant	 that	 recent	 studies	 identified	 particles	 inside	 the	 lumen	
of	 frozen	 singlet	 and	 doublet	 microtubules.36-38	 The	 enzyme	 that	
carries	 out	 acetylation	 of	a-tubulin	 on	 microtubules	 has	 not	 been	
identified	although	two	enzymes	have	been	shown	to	carry	out	the	

reverse	reaction	in	vitro	and	in	vivo—HDAC6,	a	protein	
with	 sequence	 homology	 to	 histone	 deacetylases,	 and	
SIRT2,	an	enzyme	that	also	plays	a	role	in	transcriptional	
silencing	in	yeast.39-41

Polyglycylation	 and	 polyglutamylation	 are	 poly-
meric	 modifications	 (polymodifications)	 that	 involve	
the	 attachment	 of	 polypeptide	 side	 chains	 made	 of	
glycines	 and	 glutamates,	 respectively,	 to	 specific	 gluta-
mate	residues	in	the	CTT	of	both	a-	and	b-tubulin.42,43	
Both	of	 these	modifications	are	 relatively	 rare	although	
non-tubulin	 targets	 have	 recently	 been	 identified.44-46	
In	 mammals,	 tubulin	 glycylation	 is	 mostly	 restricted	
to	 axonemes	 of	 motile	 cilia	 and	 flagella47-49	 whereas	
glutamylation	is	abundant	 in	neurons,	on	centrioles,	 in	
axonemes,	and	in	spindle	microtubules.27,50,51	In	ciliated	
protists,	both	polymodifications	are	found	in	numerous	
microtubular	 networks,	 including	 cytoplasmic	 and	
axonemal	 microtubules.47,52,53	 A	 major	 breakthrough	
in	 the	 identification	 of	 PTM	 enzymes	 was	 achieved	
recently	 with	 the	 identification	 of	 a	 gene	 family	 that	
carries	 out	 tubulin	 glutamylation.34	 The	 glutamylases	
belong	to	the	large	family	of	TTL-like	enzymes	(TTLLs)	
as	their	catalytic	region	contains	a	domain	homologous	
to	TTL.	The	 structural	 similarity	between	glutamylases	
and	TTL	reflects	a	common	property	of	these	two	types	
of	 enzymes:	 they	 catalyze	 the	 addition	 of	 an	 amino	
acid	 to	a	glutamate	 residue	 in	 the	 tubulin	CTT.	While	
TTL	 ligates	 tyrosine	 to	 the	 exposed	 C-terminal	 gluta-
mate	 residue	 via	 a	 standard	peptide	bond,33	 the	TTLL	
polyglutamylase	 enzymes	 can	 catalyze	 two	 different	
reactions:	 first,	 the	 initiating	 glutamylation	 in	 which	
a	 glutamate	 residue	 is	 added	 to	 the	 g-carboxyl	 group	
of	 the	 acceptor	 glutamate	 and	 second,	 the	 elongating	
glutamylation	in	which	additional	glutamates	are	added	
via	 an	 isopeptide	bond.	There	 appears	 to	be	 a	 division	
of	 function	 in	 the	 ability	 of	 specific	TTLL	 enzymes	 to	
initiate	or	elongate	the	glutamyl	side	chains.	Thus,	some	
TTLL	glutamylases	show	a	predominant	chain	initiating	
activity	while	other	enzymes	showed	strong	chain	elon-
gating	 activity.54	 Subtypes	 of	 TTLL	 glutamylases	 also	
differ	 in	their	preference	for	either	a-	or	b-tubulin	as	a	
substrate.	For	example,	the	murine	TTLL1	enzyme	and	
its	Tetrahymena	ortholog,	Ttll1p,	prefer	a-tubulin	while	
Ttll6Ap	of	Tetrahymena	prefers	b-tubulin.34	Finally,	the	
enzymes	that	catalyze	tubulin	glycylation	have	not	been	
determined	but	could	be	members	of	 the	TTLL	family	
whose	enzymatic	properties	have	not	yet	been	studied.

Phosphorylation	 of	 a	 serine	 residue	 in	 the	 CTT	 of	
b-tubulin	in	microtubules	has	been	reported	although	the	enzyme(s)	
responsible	have	not	been	identified.55,56	In	B	lymphocytes,	a	tyro-
sine	residue	in	the	CTT	of	a-tubulin	can	be	phosphorylated	in	vivo	
and	 in	 vitro	 by	 Syk,	 a	 non-receptor	 tyrosine	 kinase	 required	 for	
B-	 cell	 differentiation.57,58	 Outside	 of	 the	 CTT	 region,	b-tubulin	
can	 be	 phosphorylated	 at	 Ser172	 by	 Cdk1/cyclin	 B	 complex	 that	
regulates	entry	into	mitosis.8	Several	other	kinases	have	been	shown	
to	 phosphorylate	 tubulin	 in	 vitro—prostate-derived	 sterile	 20-like	
kinase	 (PSK)59	 and	 Fes	 protein	 tyrosine	 kinase60—but	 the	 in	 vivo	
relevance	and	modification	sites	are	unknown.

Figure 1. Parallels between the histone and tubulin codes in eukaryotic cells. In the 
nucleus, DNA (red) is organized into chromatin by winding around an octamer of core 
histones (two each of histones H2A, H2B, H3 and H4). The resulting nucleosomes are 
folded into a fiber about 30 nm in diameter, and these fibers can be further folded into 
higher‑order structures (not shown). In the cytoplasm of an interphase cell, microtubules 
(blue) are polymerized from heterodimers of a/b‑tubulin. The plus (fast‑growing) ends of 
the microtubules extend out to the cell cortex. In both cases, portions of the polymer can 
be marked by PTMs of the histone or tubulin building blocks. Most of these PTMs occur on 
N‑ or C‑terminal tail domains that are accessible on the polymer surface. Furthermore, in 
both cases multiple distinct PTM types can occur on the same tails creating combinatorial 
“PTM cassette” marks. These PTMs likely control specific biological functions by control‑
ling the structure of the polymer and/or by recruiting specific protein complexes to the 
polymer.
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The	Tubulin	Code

how Are PAtterns oF microtubule Ptms estAblished?
One	major	difference	between	the	histone	and	tubulin	codes	may	

be	in	the	way	the	information	is	propagated	between	generations	of	
organelles.	There	is	considerable	evidence	that	the	histone	code	can	
be	inherited	and	maintained	by	copying	the	pattern	from	preexisting	
chromatin	 onto	 newly	 assembled	 chromatin	 at	 the	 time	 of	 DNA	
replication.61	 The	 mechanism	 of	 this	 epigenetic	 transmission	 is	
likely	 based	 on	 the	 partitioning	 of	 preexisting	 histone	 particles	 to	
both	 strands	 of	 DNA	 during	 replication.	 Some	 microtubule-based	
organelles	 (e.g.,	 centrosomes	 and	 basal	 bodies)	 are	 inherited	 by	 a	
template-driven	mechanism	where	new	structures	are	formed	in	the	
vicinity	 of	 preexisting	 structures.62	 However	 there	 is	 no	 evidence	
that	 the	 template	organelle	directly	 influences	 the	PTM	pattern	 in	
the	 newly	 formed	 organelle.	 Rather,	 the	 PTM	 pattern	 is	 recreated	
in	 the	 newly	 formed	 organelle	 in	 a	 gradual	 manner.	 For	 example,	
newly	 formed	 basal	 bodies	 and	 associated	 cilia	 have	 an	 immature	
pattern	of	PTMs	characterized	by	shorter	side	chains	of	polyglycyla-
tion.49,63	Thus,	the	state	of	PTM	distinguishes	between	old	and	new	
microtubule	structures	and	could	target	assembly	factors	to	forming	
organelles.	Other	microtubule-based	structures,	such	as	cytoplasmic	
microtubules,	 the	 mitotic	 spindle	 and	 cilia,	 are	 formed	 de	 novo	
mostly,	if	not	entirely,	from	unmodified	tubulin	heterodimers.	Thus,	
in	case	of	both	template-dependent	and	-independent	microtubular	
structures,	 PTM	 patterns	 are	 probably	 recreated	 without	 a	 direct	
influence	of	preexisting	PTMs.	How	then	specific	patterns	of	tubulin	
PTMs	are	established	is	unknown	but	three	major	regulatory	mecha-
nisms	can	be	envisioned.

One	attractive	mechanism	of	control	involves	spatial	and	temporal	
regulation	 of	 the	 activity	 of	 the	 PTM	 enzymes	 (both	 forward	 and	
reverse).	For	example,	 in	wounded	cell	models,	plasma	membrane-	
associated	 members	 of	 the	 Rho,	 Rac	 and	 Cdc42	 GTPase	 families	
trigger	 localized	 changes	 in	 both	 actin	 and	 microtubule	 dynamics	
that	lead	to	cell	polarization	and	directed	motility	(reviewed	in	refs.	
64–66).	Importantly,	downstream	effectors	of	these	GTPases	include	
the	 microtubule	 plus-end	 tracking	 proteins	 (+TIPs)	 that	 “capture”	
and	“stabilize”	the	ends	of	microtubules	oriented	towards	the	leading	
edge	of	the	cell.	Recent	work	has	shown	that	activated	versions	of	the	
+TIP	proteins	EB1,	APC	and	CLASP	can	 stimulate	 the	 formation	
of	both	detyrosinated	and	acetylated	microtubules	in	wounded	fibro-
blasts.24,67	Yet	whether	GTPases	and	+TIP	proteins	directly	impinge	
on	the	PTM	enzymes	has	not	been	tested.

A	 second	 possible	 mechanism	 of	 regulation	 of	 PTM	 enzymes	
involves	their	subcellular	localization.	PGs1,	a	noncatalytic	subunit	of	
the	TTLL1	a-tubulin	glutamylase	complex,	localizes	preferentially	to	
major	sites	of	tubulin	glutamylation,	notably	centrosomes	and	basal	
bodies,	 axonemes,	 and	 the	 distal	 portion	 of	 neurites.	 Interestingly,	
this	localization	is	regulated	during	the	cell	cycle	as	PGs1	localization	
is	predominantly	cytosolic	during	mitosis.68	In	cultured	neurons,	the	
b-tubulin-preferring	glutamylase	TTLL7	is	enriched	in	the	somato-
dendritic	 regions	 and	 this	 localization	 correlates	 with	 the	 higher	
levels	 of	 glutamylation	 on	 b-tubulin	 in	 dendrites	 as	 compared	 to	
axons.69	The	Ttll6Ap	b-tubulin	polyglutamylase	specifically	localizes	
to	motile	cilia	in	Tetrahymena34	and	similar	glutamylases	localize	to	
nonmotile	sensory	(primary)	cilia	in	mammalian	cells.54	Interestingly,	
there	 are	 striking	 differences	 in	 the	 pattern	 of	 PTMs	 inside	
the	 cilium.	 For	 example,	 in	 doublet	 microtubules,	 detyrosination	
and	both	polymodifications	occur	mainly	on	the	B-tubule	while	the	
A-tubule	is	largely	unmodified.70-73	This	could	reflect	the	ability	of	
modifying	enzymes	 to	associate	with	only	a	 subset	of	microtubules	
and	at	specific	positions	within	the	lattice.

A	third	possibility	is	that	the	microtubule	substrate	is	regulated	in	
a	way	that	controls	their	access	or	exposure	time	to	PTM	enzymes.	
In	 one	 scenario,	 the	 modification	 of	 subsets	 of	 microtubules	 is	
simply	 a	 time-dependent	 phenomenon,	 that	 is,	 microtubules	 that	
are	“stabilized”	remain	in	place	long	enough	for	the	PTM	enzymes	
to	work.	An	alternative	mechanism	is	that	“stabilized”	microtubules	
exist	 in	an	unknown	structural	state	that	makes	them	the	preferred	
substrate	 for	 PTM	 addition.	 Indirect	 support	 for	 this	 possibility	
comes	 from	 the	 fact	 that	 pharmacological	 treatments	 that	 stabilize	
microtubules	 (e.g.,	 taxol)	 result	 in	 increased	 levels	of	 several	PTMs	
including	detyrosination,	acetylation	and	glycylation	(refs.	26,	74	and	
Rogowski	K,	Gaertig	 J,	unpublished).	 It	 should	also	be	 considered	
that	PTM	patterns	could	be	regulated	by	competition	between	PTM	
enzymes	and	other	proteins	that	bind	to	similar	sites	on	the	micro-
tubule	polymer.	Elucidation	of	the	molecular	mechanisms	by	which	
microtubule	 stability	 and	 the	 PTM	 enzymes	 are	 controlled,	 so	 far	
hindered	by	 the	 lack	of	 identification	of	 the	 enzymes,	will	provide	
fertile	ground	for	future	work.

who Are the interPreters oF the tubulin code?
A	major	implication	of	the	tubulin	code	is	that	PTMs	influence	

the	recruitment	of	protein	complexes	(microtubule	effectors),	which	
in	 turn	 contribute	 to	 microtubule-based	 functions.	 Three	 major	
classes	 of	 microtubule	 binding	 proteins	 can	 be	 considered	 as	
interpreters	 of	 the	 tubulin	 code.	 First,	 microtubule	 associated	
proteins	(MAPs)	such	as	Tau,	MAP1	and	MAP2	that	bind	statically	
along	the	length	of	microtubules.	Second,	plus	end	tracking	proteins	
(+TIPs)	that	bind	in	a	transient	manner	to	the	plus-ends	of	growing	
microtubules.	 And	 third,	 molecular	 motors	 that	 use	 the	 energy	 of	
ATP	hydrolysis	to	carry	cargoes	along	microtubule	tracks.

MAPs.	 Functional	 roles	 of	 structural	 MAPs	 are	 not	 completely	
understood	 but	 are	 thought	 to	 contribute	 to	 the	 stability	 and	
organization	 of	 microtubules,	 especially	 in	 neuronal	 cells.75	 In	
vitro,	 Tau,	 MAP1B,	 and	 MAP2	 bind	 preferentially	 to	 tubulins	
with	 moderate	 levels	 of	 polyglutamylation	 (~3	 glutamyl	 units)	
whereas	MAP1A	shows	optimal	affinity	for	highly	modified	tubulins	
(~6	 glutamyl	 units).76-78	 As	 a-tubulin	 glutamylation	 is	 abundant	
in	 very	 young	 neurons	 whereas	 b-tubulin	 glutamylation	 increases	
during	 post-natal	 development,50	 glutamylation	 could	 control	
transitions	in	MAP	binding	during	neuronal	development.78	Lys	40	
a-tubulin	acetylation	may	also	influence	MAP	binding	as	overexpres-
sion	of	HDAC6	delocalized	p58,	a	MAP	involved	in	the	association	
of	Golgi	membranes	with	microtubules.79

+TIPs.	Recent	work	has	shown	that	tubulin	detyrosination	nega-
tively	 affects	 the	 association	 of	 some	 +TIPs	 with	 microtubules.	 In	
yeast,	 removal	 of	 the	 C-terminal	 aromatic	 residue	 (phenylalanine)	
of	a-tubulin	 disabled	 the	 interaction	 of	 Bik1p,	 a	 homolog	 of	 the	
mammalian	cytoplasmic	linker	protein	170	(CLIP-170),	with	micro-
tubule	plus	ends	but	had	no	effect	on	the	association	of	Bim1p,	the	
EB1	 +TIP	 homolog.80	While	 it	 is	 not	 known	 whether	 such	 PTM	
occurs	 naturally	 in	 yeast,	 this	 experiment	 showed	 that	 the	 state	 of	
the	C-terminal	amino	acid	on	a-tubulin	has	profound	consequences	
in	 vivo.	 These	 results	 led	 to	 the	 hypothesis	 that	 the	 presence	 of	
unmodified	a-tubulin	at	microtubule	plus-ends	plays	an	important	
role	 in	 localization	 of	 members	 of	 the	 CLIP-170	 family	 of	 +TIP	
proteins.	Indeed,	in	neurons	and	fibroblasts	isolated	from	TTL-null	
mice,	 increased	 levels	 of	 detyrosination	 resulted	 in	 mislocalization	
of	 CLIP-170	 and	 p150Glued	 whereas	 other	 +TIP	 proteins	 such	
as	EB1	were	unaffected.81,82	CLIP-170	 and	p150Glued	both	have	
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a	CAP-Gly	domain.	 Structural	work	has	 shown	 that	 the	CAP-Gly	
domain	has	a	binding	groove	that	may	directly	recognize	the	unmod-
ified	 C-terminal	 sequence	 of	 a-tubulin.83	 Taken	 together,	 these	
results	 indicate	 that	+TIP	proteins	containing	a	CAP-Gly	microtu-
bule-binding	domain	 require	 the	presence	of	 tyrosinated	a-tubulin	
for	their	preferential	localization	to	microtubule	plus	ends.

Motors.	 Studies	 in	 a	wide	variety	of	 cell	 types	have	 shown	 that	
cargoes	 delivered	 by	 motors	 can	 be	 targeted	 to	 specific	 subcellular	
destinations,	such	as	cilia,84	axons	or	dendrites,85,86	and	the	leading	
edge	 of	 migrating	 fibroblasts.87	 Furthermore,	 cargoes	 can	 even	 be	
targeted	 to	 subsets	 of	microtubules	within	 the	mitotic	 spindle,	 the	
axon,	 and	 ciliary	 axoneme.88-90	 Thus,	 the	 idea	 that	 microtubule	
PTMs	could	serve	as	“road	signs”	to	direct	motor	transport	to	specific	
subcellular	destinations	has	long	been	an	attractive	one.	Early	studies	
showed	 that	 the	 addition	 of	 antibodies	 that	 specifically	 recognize	
detyrosinated	tubulin	prevented	binding	of	Kinesin-1	to	microtubules	
in	vitro	whereas	antibodies	to	tyrosinated	tubulin	had	no	effect.91,92	
Gel	 overlay	 and	 antibody	 inhibition	 experiments	 have	 shown	 that	
Kinesin-1	also	binds	preferentially	to	tubulin	containing	3	glutamyl	
units.77	 To	 directly	 examine	 the	 influence	 of	 PTMs	 on	 motors,	
recent	experiments	have	utilized	microtubules	lacking	specific	PTMs	
due	to	genetic	ablation	of	either	the	PTM	sites	or	enzymes.	Reed	et	
al	 showed	 that	 loss	 of	a-tubulin	 acetylation,	a-tubulin	detyrosina-
tion,	 or	b-tubulin	 polymodifications	 resulted	 in	 decreased	 binding	
of	 Kinesin-1	 to	 microtubules	 whereas	 loss	 of	a-tubulin	 polymodi-
fications	 had	 no	 effect.86	 Acetylation	 of	 a-tubulin	 also	 positively	
regulates	cytoplasmic	dynein	binding	 to	microtubules.93	The	effect	
of	a-tubulin	glutamylation	has	been	examined	using	mice	that	lack	
functional	 PGs1,	 a	 noncatalytic	 subunit	 of	 TTLL1.34,68,94	 The	
deficiency	 in	a-tubulin	 glutamylation	 is	 associated	 with	 decreased	
binding	 of	 several	 motors	 to	 microtubules	 in	 vitro,	 however,	 the	
main	effect	in	mutant	(PGs1-/-)	brains	and	cells	was	on	the	subcel-
lular	distribution	of	the	kinesin-3	motor	Kif1A	and	its	cargo	synaptic	
vesicles.95	The	 possibility	 that	 decreased	a-tubulin	 tyrosination	 in	
PGs1-/-	mice	could	affect	motor	binding	and	motility,	either	directly	
or	indirectly,	cannot	be	ruled	out	presently.	Further	work	is	needed	
to	 elucidate	 the	 molecular	 mechanisms	 by	 which	 tubulin	 PTMs	
influence	motor-microtubule	interactions	and	motility.	In	particular,	
structural	approaches	are	required	to	determine	how	the	presence	of	
PTMs	affects	the	conformation	of	the	polymer	lattice.

whAt Are the bioloGicAl consequences 
oF the tubulin code?

Intracellular trafficking.	 A	 role	 for	 tubulin	 modifications	 in	
directing	 intracellular	 trafficking	 was	 suggested	 early	 on	 based	
on	 microinjection	 of	 antibodies	 that	 recognize	 specific	 PTMs.	
Antibodies	that	specifically	recognize	detyrosinated	tubulin	inhibited	
two	kinesin-dependent	processes,	the	recycling	of	transferrin	receptors	
to	the	plasma	membrane	and	the	extension	of	vimentin	intermediate	
filaments.91,96,97	 An	 antibody	 that	 recognizes	 mono-	 and	 poly-	
glutamylated	 tubulin	 (GT335)	 interfered	 with	 kinesin-2-based	
pigment	 granule	 dispersion	 but	 not	 dynein-based	 aggregation	 in	
melanophores.98

With	 the	 identification	 of	 the	 enzymes	 that	 carry	 out	 tubulin	
modifications,	 more	 recent	 studies	 have	 used	 pharmacological	 or	
genetic	 methods	 to	 eliminate	 or	 enhance	 specific	 PTMs.	 Mice	
lacking	functional	TTL	die	soon	after	birth	due	to	disorganization	of	
neuronal	networks81	and	fibroblasts	cultured	from	these	mice	show	
defects	in	cell	morphology	during	interphase.82	Mice	that	are	null	for	

PGs1,	a	noncatalytic	subunit	of	TTLL1	a-tubulin	polyglutamylase,	
show	mislocalization	of	synaptic	vesicles,	impaired	synaptic	transmis-
sion95	 and	 disorganized	 axonemes	 of	 sperm	 flagella.94	 In	 cultured	
neuronal	cells,	siRNA-mediated	knockdown	of	TTLL7,	a	b-tubulin	
polyglutamylase,	resulted	in	decreased	neurite	outgrowth.69

Surprisingly,	 elimination	 of	 acetylation	 in	 Chlamydomonas	 or	
Tetrahymena	has	no	obvious	phenotypic	 consequences	 and	 expres-
sion	of	a	non-acetylatable	a-tubulin	in	C. elegans	rescues	defects	in	
neurons	lacking	MEC-12,	the	only	identified	tubulin	in	this	organism	
that	contains	lysine	at	position	40.99-101	Thus,	a-tubulin	acetylation	
is	not	required	for	cell	survival	but	recent	work	has	demonstrated	an	
important	role	for	this	PTM	in	differentiated	cell	types	of	vertebrates.	
Pharmacological	inhibition	of	deacetylases	results	in	hyperacetylation	
of	microtubules	 that	 can	 affect	 a	 variety	 of	 intracellular	 trafficking	
events	 such	 as	 the	 selective	 transport	 of	 the	 Kinesin-1	 cargo	 JIP1	
to	 a	 subset	 of	 neurites,86	 anterograde	 and	 retrograde	 transport	 of	
brain-derived	 neurotrophic	 factor	 (BDNF)-containing	 vesicles,93	
dynein/dynactin	 transport	 of	 aggresomes,102,103	 the	 exocytosis	 of	
interleukin	 (IL)-1b-containing	 secretory	 lysosomes,104	 as	 well	 as	
cytoskeletal	 rearrangements	 at	 the	 immune	 synapse.105	 Several	
studies	 have	 implicated	 a	 role	 for	 microtubule	 acetylation	 in	 cell	
motility—overexpression	of	HDAC6	 leads	 to	decreased	acetylation	
and	increased	cell	motility	whereas	inhibition	of	HDAC6	results	in	
increased	acetylation	and	decreased	motility.39,79	One	of	the	potential	
mechanisms	 by	 which	 HDAC6	 contributes	 to	 cell	 motility	 was	
revealed	in	a	recent	report	showing	that	HDAC6-inhibited	migrating	
cells	 have	 decreased	 microtubule	 dynamics	 and	 decreased	 focal	
adhesion	 turnover.106	 Taken	 together,	 these	 studies	 have	 provided	
important	 new	 advances	 in	 support	 of	 a	 tubulin	 code	 that	 directs	
intracellular	trafficking.

Assembly and motility of cilia.	 Polyglycylation	 is	 a	 conserved	
PTM	that	is	abundant	in	cell	types	with	cilia.	In	the	ciliated	protist	
Tetrahymena,	polyglycylation	appears	to	be	essential	based	on	experi-
ments	 in	 which	a-	 or	 b-tubulin	 genes	 were	 replaced	 by	 mutated	
versions	that	lack	modification	sites.	While	elimination	of	polyglycy-
lation	sites	on	a-tubulin	had	no	effect,	elimination	of	polyglycylation	
sites	on	the	b-tubulin	CTT	was	lethal.	Strains	with	reduced	levels	of	
glycylation	resulted	in	defects	in	axonemal	structure,	ciliary	motility	
and	 cytokinesis,	 Strikingly,	 glycylation	 site-deficient	 mutants	 had	
specific	defects	in	the	axoneme,	including	defects	in	assembly	of	the	
central	 pair	 microtubules	 and	 in	 B-tubule	 assembly.107-109	 These	
studies	 indicate	 that	 tubulin	glycylation	plays	 an	 important	 role	 in	
assembly	of	axonemal	microtubules.	One	limitation	to	these	studies	
is	that	ciliary	tubulins	are	also	extensively	polyglutamylated	on	their	
CTTs.110	 The	 respective	 roles	 of	 polyglutamylation	 and	 polygly-
cylation	 in	 the	 assembly	of	 cilia	need	 to	be	dissected	 and	 this	 task	
can	 now	 be	 attempted	 by	 direct	 manipulation	 of	 specific	 forward	
enzymes	 (TTLLs).	 Glutamylation	 and	 glycylation	 likely	 also	 play	
important	roles	in	regulation	of	ciliary	beating	once	the	organelle	is	
assembled	as	antibodies	that	recognize	either	polyglutamate	or	poly-
glycine	side	chains	interfered	with	ciliary	beating	in	ATP-reactivated	
axonemes.47,111,112

Microtubule dynamics.	 There	 is	 no	 evidence	 that	 tubulin	
PTMs	 affect	 the	 intrinsic	 properties	 of	 microtubules	 such	 as	 their	
dynamicity.	 Yet	 several	 lines	 of	 evidence	 indicate	 that	 tubulin	
modifications	may	affect	microtubule	dynamics	in	vivo,	possibly	by	
regulating	effectors	that	are	important	for	turnover	of	microtubules.	
First,	 glutamylation	 may	 be	 important	 for	 the	 structural	 stability	
of	 centrioles.113	 Second,	 some	 reports	 have	 indicated	 that	 inhibi-
tion	 of	 HDAC6	 tubulin	 deacetylase	 led	 to	 increased	 microtubule	
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stability	in	vivo40,106	although	other	studies	have	failed	to	detect	such	
effects.79,114	The	differences	between	these	 studies	could	be	related	
to	the	use	of	assays	with	different	levels	of	sensitivity.	Third,	recent	
experiments	 have	 unraveled	 a	 relationship	 between	 microtubule	
PTMs	and	microtubule	severing.	Katanin	and	spastin	are	AAA	type	
ATPases	 that	 regulate	 microtubule	 dynamics	 by	 severing	 microtu-
bules.115	Mutations	in	spastin	are	responsible	for	the	most	frequent	
form	 of	 hereditary	 spastic	 paraplegia,	 a	 human	 neurodegenerative	
disease.116	Katanin	and	spastin	require	the	CTT	domains	of	tubulins	
for	 severing	 activity115,117	 and	 spastin	 strongly	 interacts	 with	 the	
CTT	of	a-tubulin.118	Thus,	it	is	possible	that	PTMs	located	on	CTTs	
regulate	the	activity	of	severing	factors.	In	support	of	this,	mutation	of	
a	glutamate	residue	on	the	CTT	of	b-tubulin	in	C.elegans	suppressed	
the	 lethal	 phenotype	 resulting	 from	 overexpression	 of	 the	 catalytic	
subunit	of	katanin.119	In	addition,	the	increased	stability	of	cortical	
microtubules	seen	upon	mutation	of	several	adjacent	glutamates	that	
serve	as	acceptor	sites	for	polymodifications	in	Tetrahymena	can	be	
phenocopied	by	a	knockout	of	the	katanin	gene.107,108,120	However,	
the	 relationship	 between	 PTMs	 and	 microtubule	 severing	 proteins	
could	be	mutual	as	mice	with	a	mutation	in	spastin	displayed	axonal	
swellings	with	increased	density	of	microtubules	that	were	excessively	
detyrosinated.	 Interestingly,	 the	 swellings	 showed	 signs	 of	 impair-
ment	 in	 retrograde	 (but	not	 anterograde)	 axonal	 transport.121	 It	 is	
therefore	possible	that	lack	of	spastin	severing	activity	decreases	the	
turnover	of	microtubules	which	in	turn	leads	to	excessive	modifica-
tions	 on	 microtubules.	 Recent	 studies	 in	 Drosophila	 support	 this	
model	 as	 a	 restricted	 knockdown	 of	 spastin	 in	 the	 nervous	 system	
caused	 excessive	 acetylation	 of	 microtubules	 at	 the	 neuromuscular	
junction	and	affected	synaptic	activity.	Remarkably,	synaptic	defects	
caused	by	decreased	or	increased	spastin	function	could	be	partially	
reversed	 by	 exposure	 to	 pharmacological	 agents	 that	 destabilize	 or	
stabilize	 microtubules,	 respectively.122,123	The	 simplest	 explanation	
for	these	data	is	that	spastin	activity	promotes	turnover	of	microtu-
bules	 and	 indirectly	 decreases	 the	 levels	 of	 PTMs.	Taken	 together,	
these	studies	indicate	that	a	mutual	interaction	could	exist	between	
PTMs	and	microtubule	severing	factors.	On	one	hand,	microtubule	
severing	 factors	 could	 recognize	 preferentially	 modified	 micro-
tubules.	On	the	other	hand,	the	severing	activity	could	increase	the	
turnover	of	microtubules	that	in	turn	negatively	regulates	all	PTMs	
that	accumulate	on	stable	microtubules.

Mitosis.	Several	PTMs	are	present	on	spindle	and	midbody	micro-
tubules	but	are	absent	 from	astral	microtubules.25-27	Thus,	 tubulin	
PTMs	may	play	a	role	in	directing	mitotic	events	including	targeting	
of	 effector	 proteins	 to	 a	 subset	 of	 microtubules	 (for	 examples,	 see	
Refs.	124-128).	In	support	of	this,	increased	levels	of	detyrosinated	
tubulin	 seen	 in	 fibroblasts	 cultured	 from	 TTL	 null	 mice	 resulted	
in	 defects	 in	 spindle	 orientation82	 and	 yeast	 cells	 expressing	 only	
detyrosinated	 a-tubulin	 displayed	 defects	 in	 nuclear	 positioning	
and	 spindle	dynamics.80	 In	both	 animal	 and	human	 cancers,	TTL	
activity	 is	 often	 suppressed	 during	 tumor	 growth	 indicating	 that	
TTL	 suppression	 and	 resulting	 excessive	 tubulin	 detyrosination	
represent	 a	 strong	 selective	 advantage	 for	 proliferating	 transformed	
cells.129,130	 In	 studies	 on	 polyglutamylation,	 Eddé	 and	 colleagues	
showed	that	polyglutamylase	activity	peaks	in	G2	whereas	the	levels	
of	 polyglutamylated	 tubulin	 peak	 during	 mitosis.51	 In	 addition,	
microinjection	of	antibody	GT335	that	recognizes	mono-and	poly-
glutamylated	tubulins	caused	a	transient	disappearance	of	centrioles	
and	spindle	defects.113	Palmitoylation	occurs	on	Cys376	of	vertebrate	
a-tubulin131,132	and	mutation	of	the	corresponding	Cys377	residue	
to	serine	in	yeast	affected	aspects	of	mitosis	that	involve	interactions	

of	 astral	 microtubules	 with	 the	 cell	 cortex	 such	 as	 translocation	 of	
spindles	 to	 the	bud.133	Thus,	palmitoylation	of	astral	microtubules	
could	tether	spindle	microtubules	to	the	plasma	membrane.

cAn Ptms AFFect eAch other?
The	 close	 apposition	 of	 several	 of	 the	 PTMs	 on	 the	 a-	 and	

b-tubulin	CTTs	 raises	 the	possibility	 that	distinct	PTMs	 influence	
each	 other.	 One	 mechanism	 of	 influence	 is	 that	 individual	 PTMs	
could	 influence	 the	 rate	 or	 activity	 of	 other	 PTM	 enzymes	 that	
act	 on	 the	 same	 CTT	 (“cis-tail”	 effects).	 In	 the	 case	 of	 the	 gluta-
mylation	enzymes,	initial	glutamylation	sets	the	stage	for	elongation	
enzymes.54	In	mice	lacking	PGs1,	a	noncatalytic	subunit	of	the	a-tu-
bulin	polyglutamylase	TTLL1,	a	decrease	in	a-tubulin	tyrosination	
was	detected	despite	no	change	in	the	levels	of	a-tubulin	acetylation	
or	b-tubulin	polyglutamylation.95	Individual	PTMs	could	also	have	
“trans-tail”	effects	where	modification	on	one	CTT	affects	modifica-
tions	on	the	neighboring	CTTs	of	the	same	microtubule.	Cross-talk	
appears	to	occur	between	a-	and	b-tubulin	subunits	as	site-directed	
mutagenesis	of	the	glutamates	that	serve	as	sites	of	polymodification	
in	Tetrahymena	a-tubulin	affected	the	levels	of	polymodifications	on	
the	nonmutated	b-tubulin	 subunit.110	 It	 remains	 to	be	 established	
whether	cross-talk	between	different	PTMs	is	a	result	of	direct	effects	
on	 PTM	 enzymes	 or	 an	 indirect	 effect	 of	 changes	 in	 microtubule	
structure	or	dynamics.

A	second	mechanism	by	which	distinct	PTMs	can	influence	each	
other	is	that,	in	analogy	to	the	histone	code,134	the	tubulin	code	has	
the	potential	for	generation	of	a	combinatorial	readout.	For	example,	
multiple	PTMs	(polyglycylation,	polyglutamylation	and	detyrosina-
tion)	were	found	on	the	same	CTTs	of	axonemal	tubulins.110	Thus,	
the	 activity	 a	 particular	 microtubule	 effector	 could	 depend	 on	 the	
presence	of	multiple	PTMs	on	the	same	CTT.	The	use	of	multiple	
marks	would	amplify	the	readout	causing	greater	changes	in	micro-
tubule-based	processes	than	individual	modifications.

Future directions
Recent	 years	 have	been	 a	 time	of	 exciting	progress	 in	 the	 iden-

tification	 of	 the	 enzymes	 that	 carry	 out	 tubulin	 PTMs.	 Hints	
about	 how	 tubulin	 PTMs	 influence	 effector	 proteins,	 such	 as	
molecular	 motors,	 and	 cellular	 functions,	 such	 as	 intracellular	
trafficking,	have	also	emerged	recently.	However,	a	great	deal	of	work	
is	still	needed	to	identify	the	unknown	forward	and	reverse	enzymes	
(such	 as	 tubulin	 acetyltransferase,	 polyglycylase,	 deglycylase	 and	
deglutamylase),	to	determine	how	PTMs	affect	the	structure	of	the	
microtubule	lattice,	and	to	elucidate	the	physiological	functions	for	
PTMs	in	diverse	cell	types.	Together	this	work	will	be	important	for	
deciphering	 the	 tubulin	 code	 to	 understand	 how	 PTM	 of	 specific	
microtubule	tracks	influences	the	recruitment	of	protein	complexes	
and	regulates	microtubule-based	functions.
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